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Polyguanine tracts (PolyGs) are short guanine homopolymer re-
peats that are prone to accumulating mutations when cells divide.
This feature makes them especially suitable for cell lineage tracing,
which has been exploited to detect and characterize precancerous
and cancerous somatic evolution. PolyG genotyping, however, is
challenging because of the inherent biochemical difficulties in
amplifying and sequencing repetitive regions. To overcome this
limitation, we developed PolyG-DS, a next-generation sequencing
(NGS) method that combines the error-correction capabilities of
duplex sequencing (DS) with enrichment of PolyG loci using
CRISPR-Cas9–targeted genomic fragmentation. PolyG-DS markedly
reduces technical artifacts by comparing the sequences derived
from the complementary strands of each original DNA molecule.
We demonstrate that PolyG-DS genotyping is accurate, reproduc-
ible, and highly sensitive, enabling the detection of low-frequency
alleles (<0.01) in spike-in samples using a panel of only 19 PolyG
markers. PolyG-DS replicated prior results based on PolyG frag-
ment length analysis by capillary electrophoresis, and exhibited
higher sensitivity for identifying clonal expansions in the nondys-
plastic colon of patients with ulcerative colitis. We illustrate the
utility of this method for resolving the phylogenetic relationship
among precancerous lesions in ulcerative colitis and for tracing the
metastatic dissemination of ovarian cancer. PolyG-DS enables the
study of tumor evolution without prior knowledge of tumor driver
mutations and provides a tool to perform cost-effective and easily
scalable ultra-accurate NGS-based PolyG genotyping for multiple
applications in biology, genetics, and cancer research.

cancer evolution | preneoplastic | phylogenetic reconstruction |
carcinogenic fields | somatic evolution

Cancers evolve through mutation, selection, and clonal ex-
pansion (1). While the mutational landscape of cancers has

been extensively characterized (2), the evolutionary process that
leads to malignancy remains poorly understood (3). Significant
evidence indicates that cancer evolution starts many years prior
to diagnosis (4), with clonal expansions preceding morphological
changes (5). While these findings open a promising window for
early cancer detection and prevention (6), the identification of
early clonal expansions is challenging, even with modern next-
generation sequencing (NGS) technologies, because mutant
clones are often small and the mutations driving expansions are
not always known. In addition, clonal expansions in healthy tissues
are being increasingly recognized as a common feature of normal
aging (7, 8), challenging our understanding of the boundaries
between age-related and cancer-related, somatic evolution. Given
the critical importance of somatic evolution in cancer and aging

(6, 9), there is an urgent need for improved methods to sensitively
detect and quantify clonal expansions and to determine their
malignant potential by elucidating their phylogenetic relationship
to tumors.
Polyguanine tracts (PolyGs) are homopolymeric repeats of

guanine nucleotides that are highly prone to mutation (as high as
10−4 mutations per base per cell division in humans) due to slippage
errors of polymerases during replication (10–13). As cells divide,
they accumulate random insertions and deletions (indels) in
PolyGs throughout the genome, which creates a fingerprint of
their evolutionary history, encoded in the unique mutational
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profile of each cell (14). These unique fingerprints make PolyG
genotyping an ideal system for detecting early clonal expansions
and elucidating cancer evolutionary trajectories. Specifically, PolyG
profiling offers four main advantages over gene sequencing to trace
the evolution of cancer cells: 1) the rate of PolyG mutations is
several orders of magnitude higher than that of nonrepetitive
regions (10, 13), which yields more data per locus, leading to
higher sensitivity to identify genetic relationships; 2) the infer-
ence of phylogeny is more accurate because PolyG mutations are
thought to evolve neutrally, whereas driver mutation-based
lineage mapping may be biased by positive selection (or nega-
tive selection during treatment) of markers being tracked; 3)
PolyG mutations arise ubiquitously throughout the body, thus
serving as universal lineage markers of cell replication that are
agnostic of tissue type or prior knowledge of driver mutations; and
4) cell phylogenies can be resolved by analyzing only a small subset
of PolyG loci (15, 16). Together, these features make PolyG geno-
typing a practical and cost-effective alternative to whole exome or
whole genome sequencing for the study of tumor evolution. PolyGs
have been used to trace the origin of colorectal metastases (15, 16)
and to quantify their genetic diversity (17); to detect preneoplastic
clonal expansions in ulcerative colitis (18, 19); and to build cell fate
maps of mouse development (14, 20, 21).
In prior studies, PolyG genotyping was performed by fragment

length analysis (PCR followed by capillary electrophoresis) (15–19).
While this approach is quite effective, its scalability is limited. In
general, fragment analysis is low throughput, labor intensive, and
requires more input DNA for every marker added. Most im-
portantly, it has limited resolution for the detection of subclonal
variants because of artificial alleles introduced during PCR (11).
These artificial alleles, often referred to as “stutter,” obscure true
genotypes and limit the ability of the method to detect low-frequency
alleles in DNA mixtures. Several technical and analytical approaches
have been developed to leverage modern NGS tools for high-
throughput and error-corrected genotyping of other forms of
short tandem repeats (STRs) (22–25). While NGS overcomes
some of the disadvantages of fragment analysis, genotyping of
the most highly mutable, monomeric repeats (i.e., PolyG tracts)
remains challenging because of the compounding errors introduced
by PCR, cluster generation, sequencing, and alignment. These errors
compromise genotyping accuracy and limit the detection of low-
frequency mutations.
To address these limitations, we developed PolyG duplex se-

quencing (PolyG-DS), a method for accurate PolyG genotyping
based on CRISPR-DS (26). CRISPR-DS combines the error-correction
capabilities of duplex sequencing (DS) (27, 28) with target en-
richment by CRISPR-Cas9 digestion to increase efficiency. DS
employs double-strand molecular barcodes, which facilitates
error correction by allowing the comparison of the independent
sequences obtained from the complementary strands of DNA of
each original molecule. This approach removes artificial muta-
tions introduced during PCR and sequencing, thus producing
highly accurate genotypes that can be used to trace cell lineage
and to detect low-frequency alleles in genetic mixtures with high
sensitivity. We illustrate the broad applicability of the technology
for the detection of clonal expansions and reconstruction of
tumor evolution.

Results
Development of PolyG-DS for Ultra-Accurate Sequencing of PolyGs.
Homopolymers have historically been challenging to accurately
genotype with NGS, both because of polymerase slippage errors
during amplification and sequencing and because of difficulties
with sequence alignment when working with randomly fragmented,
DNA-derived reads. To overcome these challenges, we used CRISPR-
Cas9–targeted fragmentation to isolate PolyG sequences prior to
DS library construction, as previously described in CRISPR-DS
(26) (Fig. 1A). The targeted digestion creates fragments with

invariant starting points, which facilitates sequence alignment by
anchoring the read outside the repetitive region and enables the
ligation of adapters with double-stranded molecular barcodes for
DS. While PCR-based amplicon targeting also generates invariant
read starting points, it does not allow for double-strand barcoding.
Thus, we chose CRISPR-Cas9 for target enrichment and developed
a purpose-built analytical pipeline for PolyG genotyping based on DS
error correction (Fig. 1B) (SI Appendix, Methods).
The excision of PolyG sequences with CRISPR-Cas9 in short

fragments of homogeneous length enables a high degree of en-
richment via size selection with solid-phase, reversible immobi-
lization (SPRI) beads prior to adapter ligation and PCR. This
approach improves the recovery rate of DS by 10-fold relative to
ultrasonic fragmentation, reduces the required DNA input to as
little as 10 ng, and decreases the time and cost of library prep-
aration (26). While PolyG tracts are typically short sequences
(<30 bp), we designed guide RNAs (gRNAs) (SI Appendix, Table
S1) to excise PolyGs in fragments of ∼260 bp to enable sufficient
sequencing for the alignment of unique flanking regions, while
fitting into a 300-cycle Illumina run with full traversal of the PolyG
sequence. For hybrid capture, we designed two biotinylated probes
per fragment, maximizing specificity by basic local alignment search
tool (BLAST) (29) and avoiding secondary structures (SI Appendix,
Table S2 and Methods). We focused our PolyG locus selection on
sets of PolyGs previously tested for fragment analysis (16, 19).
The final PolyG target panel included 19 PolyGs, comprising
4,988 bp in total, which represents 0.0002% of the human ge-
nome. CRISPR-based size selection alone, in the absence of
hybridization capture, yielded an ∼0.4% on-target rate, corre-
sponding to an enrichment of ∼2,400×-fold, which is consistent
with prior data (26). After hybridization capture, the percentage
of on-target reads increased to an average of 91.6%, demon-
strating the efficiency of the dual-enrichment approach.
DS of PolyG tracts required the development of a specialized

analytical pipeline (Fig. 1B and SI Appendix, Fig. S1). Most algorithms
developed for STR genotyping for forensics or microsatellite
instability analysis consider the number of repeats but not the
actual sequence variation (30). PolyGs are a special class of STRs
because they are monomeric, highly mutable, and highly poly-
morphic, not just in number of repeats but also in sequence (e.g.,
monomers are sometimes interrupted by a different nucleotide),
which provides an extra layer of data but also complexity. To le-
verage the informativity of all PolyG alleles, we utilized the
lobSTR algorithm, specifically designed to genotype STRs (24), to
obtain the sequence and length of the PolyG tract in each read.
We then adapted the DS pipeline (28) to obtain a consensus ge-
notype based on comparison of the tract sequence among reads
sharing the same molecular barcode (Fig. 1B). The consensus
algorithm first compares the genotypes of all the sequencing reads
corresponding to the same strand of a DNA molecule and selects
the most common genotype as the single-strand consensus sequence
(SSCS) call. Then the two SSCS calls that correspond to the com-
plementary DNA strands of original duplex DNA molecules are
compared and, if their sequence agrees, a duplex consensus sequence
(DCS) call is produced (Fig. 1B and SI Appendix, Fig. S2).
While ultrasensitive PolyG genotyping is useful for multiple

applications, we focus here on the detection and tracing of
precancerous and cancerous clones (Fig. 1C), because this is an
area of high clinical interest and one for which we previously
demonstrated the value of PolyG profiling using capillary elec-
trophoresis (15–19). The samples used in the study, and their
sequencing metrics, are listed in SI Appendix, Table S3.

PolyG-DS Yields Highly Accurate and Reproducible PolyG Genotypes.
PolyG tracts are prone to accumulating errors during PCR am-
plification and sequencing, which hampers the detection of
subclonal mutations. We first tested whether DS was proficient
at eliminating these errors by comparing the genotypes obtained
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with raw, SSCS, and DCS calls in the same sample. We observed
that low-frequency, artifactual alleles were common in raw and
SSCS calls but were efficiently eliminated at the DCS level (Fig.
2A). Raw genotypes for all the PolyGs tested typically contained
hundreds of low-frequency allele sequences, likely derived from
PCR, cluster generation, sequencing by synthesis, and/or align-
ment artifacts. The number of alleles was reduced by an order of
magnitude in SSCS calls and to single digits in DCS calls (SI
Appendix, Fig. S3A). It should be noted that while a single human
diploid cell has only one or two different alleles, human biopsies
containing thousands of cells might have additional low-frequency
alleles that reflect the heterogeneous evolutionary history of dif-
ferent cell populations. While all PolyGs experienced a reduction
in the number of alleles from SSCS to DCS calls, this reduction
was significantly larger for longer PolyGs (P = 0.009 Spearman
correlation, SI Appendix, Fig. S3B). This result is consistent with
higher chances of polymerase slippage in the first PCR cycle in
longer than in shorter PolyGs. First cycle errors cannot be cor-
rected with SSCS, but they are corrected with DCS, which makes

PolyG-DS especially suitable for accurate PolyG genotyping, par-
ticularly for longer PolyGs.
We next tested the reproducibility of DCS PolyG profiling by

comparing the allele frequencies obtained from two technical
replicates using 100 ng of the same DNA extracted from colon
stroma (Fig. 2B). A subset of PolyGs produced few DCS calls,
which was mostly due to difficulties in lobSTR genotyping. To
ensure high-quality genotype comparisons in this and subsequent
experiments, we implemented a minimum of 40% genotyped raw
reads and 25 DCS calls for each PolyG and sample to be ana-
lyzed (SI Appendix, Methods and Figs. S4 and S5). In this re-
producibility experiment, 12 PolyGs met these criteria in both
replicates and their allele frequencies were calculated and
compared between the two samples. We observed excellent allele
frequency concordance for near-homozygous and heterozygous
PolyG alleles, as expected, but also for low-frequency alleles (<0.1),
which are likely to represent subclonal populations present in this
sample. We also demonstrated that the allele frequency was re-
producible when decreasing the input DNA to 25 ng (R2 = 0.987)
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Fig. 1. Overview of PolyG-DS. (A) CRISPR-Cas9 tar-
get enrichment. gRNAs are designed to excise PolyG
sites into fragments of ∼260 bp. Size selection using
0.5× solid-phase, reversible immobilization (SPRI)
beads enables the recovery of the homogenously
sized, excised fragments in the solution. Fragments
are then ligated with DS adapters, which contain a
double-stranded molecular barcode comprised of
10 bp random nucleotides and a 3′-dT overhang. (B)
Error correction by DS. Molecules with same barcode
are grouped and the most common genotype is se-
lected as the single-strand consensus sequence (SSCS)
call for each strand of DNA. SSCS calls are then
compared, and a duplex consensus sequence (DCS)
call is generated only if the two calls agree. (C) PolyG
profiling enables the detection of mutant alleles and
phylogenetic reconstruction. Precancerous and can-
cerous cells accumulate passenger PolyG mutations
as they clonally expand. For each sample, the fraction
of mutant PolyG markers (markers with a genotype
significantly different between a given sample and a
control sample by Fisher exact test) informs of the
level of clonal expansion. In addition, genotype changes
can be used to estimate genetic distance (Jensen-
Shannon Distance, JSD) and build phylogenetic trees.
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and 10 ng (R2 = 0.961) (SI Appendix, Fig. S6). Overall, these studies
demonstrate the power of DS to eliminate artifactual alleles in
PolyG NGS genotyping and to achieve high reproducibility in allele
frequency quantification for DNA input as low as 10 ng.

PolyG-DS Provides High Sensitivity for Detecting Low-Frequency
Alleles in Population Mixtures. High accuracy in PolyG genotyping
is expected to result in high sensitivity for the detection of muta-
tions at low-variant allele frequencies. To estimate the sensitivity of
our method, we mixed two DNA samples from different individuals
(Samples A and B, colon stroma) at decreasing proportions of
Sample A into B, ranging from 0.5 to 0.001 (Fig. 3A). This spike-in
experiment simulates the challenge of detecting small subclones
within samples and enables a rigorous assessment of sensitivity by
comparing observed and expected allele frequencies. A total of 12
PolyGs produced successful genotypes across all samples (Fig. 3B
and SI Appendix, Fig. S7A). While some PolyGs had overlapping
alleles between the two samples, the presence of multiple alleles
within each sample, the variability in allele frequency, and the four
different mixing conditions in the experimental design provided a
large number of data points (184) to compare observed and
expected frequency. Both values were highly correlated, even when
including low-frequency (<0.1) alleles (Pearson correlation, R2 =
0.99, P < 0.0001, Fig. 3C). We observed 50 out of 54 alleles (93%
sensitivity) expected to be present at a frequency <0.1 and 22 out
of 24 alleles (92% sensitivity) expected to be present at a fre-
quency <0.01. To gain further insight into the question of whether
low-frequency alleles corresponded to true alleles or artifactual
alleles, we tracked one variant that was present in Sample A at a
very low frequency (0.006; SI Appendix, Fig. S7B). We observed
that this variant appeared in the 0.5 and 0.1 mixtures close to the
expected frequency, supporting the true nature of this allele. Col-
lectively, these results confirm the genotyping accuracy of our
method and demonstrate its high sensitivity for low-frequency allele
detection.
We next calculated the Jensen–Shannon distance (JSD; SI

Appendix, Methods), which has previously been used to quantify
genetic divergence across a panel of PolyG tracts (16, 19), be-
tween each sample and Sample B (Fig. 3D). The average JSD
recapitulated the genetic composition of each sample: the higher
the proportion of Sample A in the mixture, the higher the ge-
netic distance to Sample B (Fig. 3E). The genetic distance of the
0.5 and 0.1 mixtures was similar between raw, SSCS, and DCS
calls, indicating that artifactual alleles in raw and SSCS calls
(Fig. 2A) did not interfere with the detection of variants at larger
allele frequencies (Fig. 3E). However, for the 0.01 and 0.001
mixtures, the JSD calculated with raw and SSCS calls was at the
same level as the background JSD, indicating no ability to detect
genetic differences in those mixtures when using raw and SSCS
calls. The technical background was estimated by measuring the
JSD between replicate samples (B to B) (Fig. 3F). For DCS calls,
the background was ∼50% lower than for raw and SSCS calls,

which enabled the resolution to distinguish the JSD of the 0.01
and 0.001 mixtures above the background (Fig. 3E). Consistently,
phylogenetic trees built with this data demonstrated that DCS
calls, but not raw or SSCS calls, resolved the low-frequency
mixtures (0.01 and 0.001) with high-bootstrap confidence (SI
Appendix, Fig. S8). These results demonstrate the benefit of
using duplex error correction over single-stranded or no cor-
rection to detect variants at low-allele frequencies with maximal
resolution.

PolyG-DS Detects Preneoplastic Clonal Expansions and Elucidates
Their Phylogeny. To prove the value of PolyG-DS for detection
of subclonal mutations in vivo, we analyzed nondysplastic colonic
biopsies from patients with ulcerative colitis, an inflammatory
bowel disease that predisposes to colorectal cancer. By com-
paring capillary electrophoresis PolyG profiles in colonic epi-
thelium and stroma, we previously showed that PolyG mutant
clones in nondysplastic colonic biopsies distinguish the patients
that have progressed to high-grade dysplasia (HGD) or cancer
(18, 19). Conceptually, the presence of these clones indicates
that the cells have gained the ability to expand abnormally (al-
though not apparent histologically) and represent potentially
precancerous populations, which is consistent with the well-
stablished role of carcinogenic fields in this disease (31–34).
To directly compare our method with the prior method, we an-
alyzed a subset of 13 nondysplastic colonic biopsies previously
profiled by capillary electrophoresis and confirmed that biopsies
from patients with HGD or cancer elsewhere in their colon
harbored a higher burden of PolyG mutant clones than biopsies
from patients dysplasia free (Fig. 4A), replicating prior findings
(19). As in fragment analysis by capillary electrophoresis, mu-
tations were identified by comparing PolyG genotypes between
colonic epithelium and stroma (SI Appendix,Methods). However,
the increased sensitivity of DS enabled the identification of a
larger fraction of mutations in patients with HGD or cancer,
including the detection of mutations in a biopsy previously de-
termined to have no clones by fragment analysis (Fig. 4A).
PolyG-DS also revealed some mutations in patients without
dysplasia, consistent with recent reports of clonal evolution in
ulcerative colitis (34–36). To explore clonal expansion hetero-
geneity across biopsies, for one patient without dysplasia and two
patients with HGD or cancer, we analyzed three independent
nondysplastic colonic samples (SI Appendix, Fig. S9). None of
the samples from the patient without dysplasia had mutant
PolyG genotypes, while two out of the three biopsies from each
patient with HGD/cancer had mutant genotypes (SI Appendix,
Fig. S9). This rate of mutation in nondysplastic biopsies of pa-
tients that had progressed to cancer is consistent with our prior
study and with the finding that, in these patients, clonal expan-
sions occur as large patches across the colon (19). From a clinical
perspective, we postulate that patients with more extensive
clonal expansions might be at a high risk of developing HGD or
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cancer in the future. PolyG-DS provides a fast, easy, and sensi-
tive approach to analyze clonal expansions in multiple nondys-
plastic samples, facilitating future studies in larger cohorts of
patients with ulcerative colitis.
Next, we aimed to determine whether PolyG-DS could resolve

the clonal relationships among dysplastic biopsies. First, we
tested the method in a simple scenario including cancer, non-
dysplastic, and stroma control biopsies and demonstrated that
PolyG-DS profiling accurately resolved the cancer lineage using
phylogenetic reconstruction based on the JSD and unweighted
pair group method with arithmetic mean (UPGMA) (37) (SI
Appendix, Fig. S10 and Methods). We then used the same ap-
proach to reconstruct the evolutionary history of four adjacent
colon biopsies procured from a colectomy specimen from a pa-
tient with ulcerative colitis (Fig. 4B). Pathological assessment
indicated that one biopsy was negative for dysplasia, one
exhibited low-grade dysplasia (LGD), and two contained HGD
(HGD1 and HGD2). In our prior study using fragment analysis
by capillary electrophoresis, we identified mutations shared by
HGD1, LGD, and negative for dysplasia biopsies but not HGD2
(19). Our analysis here identified multiple markers that sup-
ported those findings (Fig. 4 C and D) and elucidated the evo-
lutionary path of these biopsies (Fig. 4E). The phylogenetic tree
structure indicated that HGD1, LGD, and the negative biopsy
evolved as a clonal patch, whereas HGD2 was unrelated. These
findings are consistent with the notion of clonal mosaicism and
synchronous clonal expansions in ulcerative colitis (33) and

illustrate the utility of our method to study the evolutionary
trajectories of dysplasia and cancer.

PolyG-DS Detects Age-Related PolyG Mutations Previously Identified
by Capillary Electrophoresis. To further compare PolyG-DS to
fragment analysis by capillary electrophoresis and to highlight
the ability of this method to detect PolyG mutations that accu-
mulate in an age-dependent manner as cells proliferate, we next
analyzed DNA from a previously established collection of clonal
organoids derived from single normal intestinal epithelial stem
cells procured from young (4 y-old) and older (66 y-old) indi-
viduals (38). Prior profiling of these samples by capillary elec-
trophoresis demonstrated that organoids derived from older
stem cells had more PolyG mutations than organoids derived
from younger stem cells, quantified as the genetic distance to a
polyclonal control sample representative of the germline geno-
type (16). Using a subset of the same samples, PolyG-DS
revealed multiple markers with higher genetic distances in
older than younger organoids (Fig. 5A). When the average ge-
netic distances between young and old were compared, the re-
sults closely resembled prior findings by capillary electrophoresis
(Fig. 5B), further demonstrating the value of PolyG-DS as an
NGS alternative to fragment analysis for PolyG profiling.

PolyG-DS Accurately Reconstructs Ovarian Cancer Evolution. To ex-
pand the range of applications of PolyG-DS, next we explored
the value of our method to study the evolutionary history of high-
grade serous carcinoma (HGSC), a cancer type that originates in
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the fallopian tube and disseminates locally, following tumor
trajectories that are not well understood (39). From a patient
who underwent debulking surgery for HGSC (pT3cN1), we
obtained two primary tumor biopsies from bilateral fallopian
tubes, two primary tumor biopsies from bilateral ovaries, one
omental metastatic biopsy, and two normal biopsies from the
peritoneum (Fig. 6A and SI Appendix, Methods). We measured
the JSD of each sample relative to a normal peritoneal control
sample to build a marker-level genetic distance heatmap
(Fig. 6B) and used pairwise distances between samples and the
UPGMA method to reconstruct their phylogeny (Fig. 6C). The
samples clustered in branches that had high-confidence boot-
strap but showed no obvious relationship with their anatomical
location (e.g., samples from opposite sides clustered together).
These results are consistent with prior findings indicating ex-
tensive mixing of cells within the peritoneal cavity during meta-
static spread (40). Nevertheless, we considered the possibility
that the tree structure could be affected by variable tumor purity.
Previous studies that leveraged PolyG genotyping for phyloge-
netic reconstruction (16, 17, 19) had relied on samples with
consistently high purity, achieved by microdissection of areas
with high–tumor cell content under the microscope. Here,
manual dissection of pure tumor was intentionally not performed
to represent the usual clinical collection and to challenge our
method to detect PolyG mutations in the presence of contami-
nating normal tissue. This is also the reason that, here, we chose
to employ UPGMA instead of the previously used neighbor-
joining algorithm for phylogenetic reconstruction, as we found
that the ultrametric trees produced by UPGMA were very robust
to varying levels of normal admixture. The UPGMA algorithm
effectively scales branch lengths, such that all samples have the
same distance from the root. This overcomes the problem of
artifactually shortened branch lengths due to impurity and re-
sults in the correct tree topology.
To investigate tumor purity, first we performed histological

examination of adjacent formalin-fixed, paraffin-embedded
(FFPE) tissue, which confirmed variable tumor content (SI Ap-
pendix, Fig. S11A). Then, we performed TP53-targeted standard
DS and used the mutant allele frequency (MAF) of the TP53
driver mutation to correct the PolyG genotypes of each biopsy by
normalizing their known proportion of normal cells (SI Appen-
dix, Methods). TP53 mutations are an early and ubiquitous event
in HGSC (41–44) and are typically accompanied by the loss of
the second allele (45, 46), which makes them ideal surrogate

markers of tumor purity. Deep DS of TP53 (>1,000×; SI Ap-
pendix, Methods) revealed the driver tumor mutation (chr17:
g.7674241C > T, p.S241F) at variable frequencies across sam-
ples, in general agreement with pathological estimates of tumor
purity (SI Appendix, Fig. S11A) and in close correlation with
TP53 loss of heterozygosity (R2 = 0.999, P < 0.001; SI Appendix,
Fig. S11B). These results confirm the loss of the second allele
and further validate the use of the driver TP53 mutation MAF to
estimate tumor content for PolyG profile correction. Genetic
distances calculated on corrected profiles yielded a tree that
closely replicated the topology of the tree obtained without
correction (SI Appendix, Fig. S11C). This result demonstrates
that PolyG-DS coupled with the UPGMA method can resolve
phylogenies in samples with variable levels of normal tissue
contamination. While this application of PolyG-DS requires
more extensive testing with larger numbers of samples and pa-
tients, this example demonstrates the versatility of the assay and
its potential for high-throughput testing of tumor evolution in
research and clinical settings.

Discussion
We have shown that by leveraging CRISPR-Cas9–based target
enrichment by size selection with DS error correction, we can
perform ultra-accurate PolyG genotyping, enabling high resolu-
tion for the detection of subclonal variants and cell lineage
tracing. By correcting and comparing the genotypes of both
strands of DNA independently, PolyG-DS efficiently eliminates
artifactual alleles that plague raw sequencing reads. A substan-
tial proportion of these alleles persisted after single-strand error
correction, indicating that they probably correspond to stutter in
the first PCR cycles and therefore are not removable by single-
stranded barcoding methods. Consistently, longer PolyG repeats,
which have higher rates of polymerase slippage, exhibited higher
reduction in the number of alleles from single-stranded to
double-stranded error correction than shorter PolyG repeats.
Because of the accuracy of PolyG-DS, genotypes were highly
reproducible across replicates, and low-frequency mutations
(<0.01) could be detected in spike-in samples according to ex-
pectation, demonstrating the high resolution of the assay for PolyG
mutation detection.
Our prior studies using PolyG fragment analysis by capillary

electrophoresis already demonstrated the value of PolyG geno-
typing to detect precancerous clonal expansions (18, 19) and trace
cancer evolution (15, 16), but this approach is low throughput,
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time intensive, and cannot detect genetic heterogeneity at low allele
frequencies (47). By reanalyzing a subset of samples previously
analyzed by capillary electrophoresis and by using a similar number
of PolyG markers, we provided a side-by-side demonstration of the
increased resolution for subclonal detection enabled by PolyG-DS.
An additional advantage of PolyG-DS compared to capillary elec-
trophoresis is that it is highly multiplexable. There are thousands of
PolyG tracts in the human genome, and a prior study demonstrated
the feasibility of simultaneously interrogating ∼2,500 STR by using
CRISPR-Cas9 excision followed by NGS with selective primers
(25). With PolyG-DS, such a high number of markers is unlikely
to be necessary for most applications, since subclonal resolution
can already be achieved with a small and inexpensive subset of
markers. We note, however, that our panel included PolyGs that
consistently failed in some samples because of sequence com-
plexities that made their genotyping challenging. Thus, it is
desirable to test hundreds of markers in a single assay in order
to select the best performers and optimize the panel for maxi-
mum information with minimal cost. These efforts are currently
underway.
While ultra-accurate PolyG genotyping has multiple applica-

tions in genetics and biology, here we have focused on the ability
of these sequences to inform about preneoplastic and neoplastic

progression. PolyG mutations are uniquely suited for this pur-
pose because, unlike cancer driver gene mutations, they are
neutral (e.g., not selected) to our knowledge, and the same
mutation type (indels) affects all replicating cells. This makes
PolyG mutations informative of (pre)neoplastic processes with-
out the limitation of cancer type. In addition, their high muta-
bility and molecular clock nature makes them ideal candidates
for phylogenetic reconstruction. We have leveraged these prop-
erties to illustrate the value of PolyG-DS in two different
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pian tube; ROV, primary tumor in the right ovary; LFT, primary tumor in the
left fallopian tube; LOV, primary tumor in the left ovary; MT, metastasis in
omentum; and NP, normal peritoneum. Two independent normal peritoneal
biopsies were collected (NP1 and NP2). (B) Heatmap of genetic distance to
normal tissue (NP1). (C) The phylogenetic tree was built with UPGMA.
Confidence values for each interior branch were calculated from 1,000
bootstrap replicates.
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settings: the identification of clonal expansions in normal tissue
and tracing of cancer evolution.
The study of clonal expansions in morphologically normal

tissue has become especially relevant after multiple studies have
revealed prevalent small size clonal expansions as an intrinsic
component of normal aging across tissues (8, 48). Here, we have
replicated prior findings by capillary electrophoresis, demon-
strating more PolyG mutations in 66 y-old than in 4 y-old normal
intestinal stem cells (16). In addition, we have confirmed the
ability of PolyG-DS to detect more frequent clonal expansions in
the nondysplastic colonic epithelium of patients with ulcerative
colitis that progressed to cancer compared to those without
cancer—a finding that we initially reported in two independent
studies using capillary electrophoresis (18, 19). While a back-
ground level of clonal expansion is expected in noncancerous
colonic epithelium of ulcerative colitis patients because of the
underlying remodeling of the inflamed mucosa (34–36), different
selective pressures enable the later expansion of precancerous
clones in the subset of patients who eventually progress to de-
veloping colorectal cancer (36). In this context, measuring the
“occult” (e.g., not histologically apparent) evolutionary process
in nondysplastic tissue might provide venues to predict cancer
progression in ulcerative colitis and potentially other preneo-
plastic diseases (33). PolyG-DS offers a promising tool for this
purpose and, more generally, for the quantification of clonal
expansions in normal tissue agnostic to specific driver mutations.
Regarding PolyG profiling in tumors, prior studies by frag-

ment analysis already illustrated the value of this approach to
trace a cancer’s evolutionary history and to elucidate the path-
ways of metastatic dissemination, with important implications for
the management of advanced disease (15–17). Here, we provide
proof of principle of the value of PolyG-DS to reconstruct the
evolution of early disease, specifically the dysplastic stages that
precede colorectal cancer progression in ulcerative colitis. The
analysis of the genetic relationships among histologically normal,
dysplastic, and cancerous samples is critical to understanding the
evolution of cancer in this disease and to identifying the specific
dysplastic lesions that are cancer precursors, which is an unmet
clinical need (49). Similar approaches could be employed to
study the evolution of precancerous lesions in other cancer types
in order to elucidate what lesions are genetically linked to cancer
(aggressive) versus those that are unrelated to cancer (indolent)
(50, 51). In addition, we have demonstrated that PolyG-DS could
be useful to characterize complex cancer evolutionary trajecto-
ries, such as the one identified in this study and in prior studies
of HGSC evolution (40, 45). Here, we analyzed typical clinical
samples without time-intensive tissue processing to determine
whether ultra-accurate PolyG genotyping coupled with UPGMA
phylogenetic reconstruction was tolerant to normal tissue con-
tamination. UPGMA produces ultrametric trees, which is helpful
in avoiding branch-length artifacts caused by severely variable
purity. By comparing phylogenetic trees before and after purity
correction, we demonstrated that the topology of the trees was
highly consistent. However, we have not formally tested how
much contamination is tolerable, which would likely depend on
the cancer type and the selected panel of PolyG markers. Thus,
future studies should approach this issue carefully. Furthermore,
we anticipate that as more NGS-based PolyG data become
available, we will be able to develop rigorous methods for
subclonal reconstruction from these data. Currently, the PolyG
allele mixture present in each sample is fed “as is” into distance-
based, phylogenetic reconstruction algorithms. While this method
produces highly accurate sample trees, it cannot resolve sub-
clones, which is a significant limitation. The digital data gen-
erated by PolyG-DS has the potential to illuminate subclonal
structure, if used in conjunction with an appropriate evolutionary
model (52).

Efficient target enrichment by CRISPR-Cas9 fragmentation
depends on DNA quality and therefore the method, as currently
developed, is not immediately applicable to FFPE samples. An
alternative includes the elimination of CRISPR-Cas9 enrichment
in favor of two rounds of hybridization capture (53). This ap-
proach, however, requires more DNA, and it is more expensive
long term because of the additional cost of two rounds of capture
versus the upfront cost of gRNAs. Other approaches to improve
the assay for future applications include the implementation of
newer algorithms for PolyG genotyping (30), the inclusion of a
larger number of markers and selection of the best performers,
and the addition of CRISPR-Cas9 guides and hybridization
probes for selected target genes to simultaneously screen for
mutations in PolyG tracts and candidate cancer drivers.
In summary, we have developed a method to transition PolyG

profiling from capillary electrophoresis to an NGS sequencing
platform that leverages the advantages of CRISPR-Cas9 target
enrichment and error correction by DS. We have demonstrated
that the profiling of less than 20 PolyG provides sufficient in-
formation to detect subclonal alleles and resolve cancer phy-
logenies. In addition, the high accuracy and sensitivity of PolyG-
DS allows the identification of clonal expansions in histologically
normal tissue without prior knowledge of driver mutations.
PolyG-DS is high throughput and readily scalable to fit different
study needs, providing a comprehensive solution to PolyG pro-
filing for multiple applications in biology and medicine.

Materials and Methods
Samples. Study samples are listed in SI Appendix, Table S3 and information
about collection and processing is provided in SI Appendix, Methods.

PolyG-DS Library Preparation. CRISPR-Cas9 digestion was performed using
gRNAs for 19 PolyGs (Fig. 1A and SI Appendix, Table S1), following published
protocols (26) (SI Appendix, Methods). Digested fragments were size se-
lected using 0.5× AMPure XP Beads (Beckman Coulter) and then A-tailed
and ligated to DS adapters using the NEBNext Ultra II DNA Library Prep Kit
(NEB). We used DS adapters (TwinStrand Biosciences) that contain 10 bp
random double-stranded molecular barcodes (also known as tags) and a
3′-dT overhang (Fig. 1A). Ligated fragments were PCR amplified, captured
with 120-mer biotinylated oligos (IDT), and indexed by PCR, as previously
described (26) (SI Appendix, Methods).

Sequencing. Samples were visualized on the Agilent 4200 TapeStation to
confirm the presence of distinct peaks corresponding to the fragment length
of the designed CRISPR-Cas9 cut fragments. Then, samples were quantified
using the Qubit dsDNA HS Assay Kit and were sequenced in an Illumina
MiSeq using a version 2 300-cycle kit or in an Illumina HiSeq 3000 (Genewiz).

PolyG Genotyping. Sequencing reads were processed with an in-house
pipeline that integrates lobSTR, which is an STR profiler for NGS data (24)
(http://lobstr.teamerlich.org), and DS for error correction (28) (SI Appendix,
Fig. S1 and https://github.com/risqueslab/PolyG-DS). First, duplex barcodes
are extracted from the reads. Second, the lobSTR algorithm aligns PolyG-
containing reads to the human reference genome and uses the flanking
sequence to identify and extract the PolyG sequence. Third, duplex barcodes
are used to identify all the raw reads derived from the same original DNA
molecule to determine the consensus PolyG genotype (Fig. 1B and SI Ap-
pendix, Fig. S2). As in standard DS (28), consensus making occurs at two
levels: SSCS and DCS. However, the consensus is not produced at the nu-
cleotide level but at the PolyG genotype level, which we refer to as “call.”
SSCS calls are produced by comparing the PolyG genotypes of all the raw
reads sharing the same barcode and selecting the most common one. DCS
calls are produced by comparing the PolyG genotypes of the two SSCS with
complementary barcodes (which correspond to the two strands of the same
original DNAmolecule). Only when the two SSCS genotypes agree, a DCS call
is made (Fig. 1B and SI Appendix, Fig. S2). For final PolyG profiling, we fil-
tered out DCS calls that contained more than two non-G/C nucleotides or
more than two nucleotides that were the reverse compliment of the motif.
Details on the output files generated in the analysis are provided in SI Ap-
pendix, Methods and Fig. S1. A postprocessing script was used to calculate,
for each sample, the percentage of raw reads aligned to each PolyG region
using Burrows–Wheeler Aligner mem (54) and the percentage of reads
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successfully aligned by lobSTR for each PolyG. Several PolyGs failed geno-
typing in some samples (SI Appendix, Fig. S4), resulting in a low-DCS gen-
eration (SI Appendix, Fig. S5). For each sample, we only considered PolyG
markers that had at least 40% genotyped reads and that produced a mini-
mum of 25 DCS passing filter (SI Appendix,Methods and Fig. S5). In addition,
we required that all the samples compared against each other shared the
same informative PolyGs.

Data Analysis. Statistical and data analyses were performed in Prism
(Graphpad) and R (https://cran.r-project.org) using the software packages
ape and phangorn (55, 56). We used the JSD to quantify genetic divergence
to a reference sample, to build heatmaps, and to calculate pairwise JSD
among samples to build phylogenetic trees (16). Because PolyG mutations
behave as molecular clocks, we built phylogenetic trees using the UPGMA
(37). For a two-sample comparison of the fraction of mutant genotypes, we

used Fisher exact test with P < 0.0005 as criteria for mutation. Additional
methods and statistical analyses are explained in SI Appendix, Methods.

Software Availability. Software for PolyG-DS data analysis is available at
https://github.com/risqueslab/PolyG-DS.

Data Availability. Sequencing reads data have been deposited in the Se-
quence Read Archive (PRJNA674403). All other study data are included in the
article and/or supporting information.
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